
Code Review Checklist

Step 1

Formatting

Consistent styling guide


Code clarity


Ensure that the code follows the established styling guide, including consistent indentation, spacing, and 

naming conventions.



Use automated formatters to catch style violations early and maintain code consistency.



Review the code's formatting to ensure clarity and readability, making the logic flow easier to follow.



Enforce style rules through linter integrations in IDEs and CI/CD pipelines for consistent formatting across 

contributors.

Step 2

Comments

Clear Explanation


Reduced Dependency


Include clear comments that explain the intent and approach of complex code sections.



Ensure comments clarify the reasoning behind design decisions, aiding in knowledge transfer among team 

members.



Use comments to reduce dependency on individual developers by documenting critical information.



Ensure that comments are comprehensive and ensure that critical information is accessible to the entire team.

This checklist verifies code quality across formatting, comments, error handling, and more. 

They’re critical for building secure, resilient software systems.



Step 3

Error Handling

Robust Handling


Prevent Unhandled Exceptions


Implement robust error handling to provide graceful failures and meaningful error messages.



Verify the correct catching and handling of exceptions and log errors with useful context.



Ensure that error handling practices are consistent throughout the codebase.



Proper exception handling and logging reduce crashes by gracefully dealing with edge cases and provide clear 

debugging information.

Step 4

Security

Adherence to Security Best Practices


Protection Against Vulnerabilities


Review the code for adherence to security best practices such as input validation, output encoding/escaping, 

and encryption for sensitive data.



Methodically inspect the code to identify areas where user input is not properly sanitised and where output 

needs correct encoding.



Check for vulnerabilities like SQL injection, cross-site scripting, and exposure of confidential data.



Ensure that encryption is correctly applied using approved algorithms and key lengths for sensitive data, such 

as passwords or financial information.



Step 5

Performance

Efficiency Evaluation


Optimisation Potential


Evaluate algorithms and data structures for efficiency and look for opportunities to optimise unnecessary 

operations.



Identify areas where memoization or caching can improve performance, particularly for repetitive 

computations.



Be aware that optimisations, such as caching and algorithm improvements, can significantly speed up code, 

even by over 100 times in some cases.



Keep in mind that even small improvements, such as a 10% boost in performance, can have a substantial 

impact when serving millions of requests.


	Checklist PDF
	Checklist PDF-1
	Checklist PDF-2

